Dynamical Cubes and a Criteria for Systems Having Product Extensions
نویسنده
چکیده
For minimal Z2-topological dynamical systems, we introduce a cube structure and a variation of the regionally proximal relation for Z2 actions, which allow us to characterize product systems and their factors. We also introduce the concept of topological magic systems, which is the topological counterpart of measure theoretic magic systems introduced by Host in his study of multiple averages for commuting transformations. Roughly speaking, magic systems have a less intricate dynamic and we show that every minimal Z2 dynamical system has a magic extension. We give various applications of these structures, including the construction of some special factors in topological dynamics of Z2 actions, and a computation of the automorphism group of the minimal Robinson
منابع مشابه
Entropy of infinite systems and transformations
The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of information systems. This entropy works perfectly for probability measure preserving (p.m.p.) transformations. However, it is not useful when there is no finite invariant measure. There are certain successful extensions of the notion of entropy to infinite measure spaces, or transformations with ...
متن کاملSynchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control
In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...
متن کاملAdmissible Vectors of a Covariant Representation of a Dynamical System
In this paper, we introduce admissible vectors of covariant representations of a dynamical system which are extensions of the usual ones, and compare them with each other. Also, we give some sufficient conditions for a vector to be admissible vector of a covariant pair of a dynamical system. In addition, we show the existence of Parseval frames for some special subspaces of $L^2(G)$ related to...
متن کاملExtensions of ELECTRE-I and TOPSIS methods for group decision-making under complex Pythagorean fuzzy environment
Multi-criteria group decision-making is a process in which decision makers assess the performance of alternatives on the basis of conflicting criteria to opt the most worthy alternative as solution. TOPSIS and ELECTRE are effective and commonly used methods to solve multiple criteria decision-making problems. The aim of this study is to propose two new models, namely, complex Pythagorean fuzzy ...
متن کاملPROJECTED DYNAMICAL SYSTEMS AND OPTIMIZATION PROBLEMS
We establish a relationship between general constrained pseudoconvex optimization problems and globally projected dynamical systems. A corresponding novel neural network model, which is globally convergent and stable in the sense of Lyapunov, is proposed. Both theoretical and numerical approaches are considered. Numerical simulations for three constrained nonlinear optimization problems a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016